Phase Separation in the Neutral Falicov-Kimball Model

Tom Kennedy ${ }^{1}$

Received January 21, 1998
The Falicov-Kimball model consists of spinless electrons and classical particles (ions) on a lattice. The electrons hop between nearest neighbor sites, while the ions do not. We consider the model with equal numbers of ions and electrons and with a large on-site attractive force between ions and electrons. For densities $1 / 4$ and $1 / 5$, the ion configuration in the ground state had been proved to be periodic. We prove that for density $2 / 9$ it is periodic as well. However, for densities between $1 / 4$ and $1 / 5$ other than $2 / 9$ we prove that the ion configuration in the ground state is not periodic. Instead there is phase separation. For densities in $(1 / 5,2 / 9)$ the ground-state ion configuration is a mixture of the density $1 / 5$ and $2 / 9$ ground-state ion configurations. For the interval $(2 / 9,1 / 4)$ it is a mixture of the density $2 / 9$ and $1 / 4$ ground states.

KEY WORDS: Falicov-Kimball model; ground state; phase separation.

1. INTRODUCTION

The spinless Falicov-Kimball model has two types of particles: spinless electrons and classical particles, which we refer to as ions. The particles are on a lattice with the restriction that there is at most one ion at each lattice site. The spinless electrons are fermions, so there is at most one electron per site. The electrons can hop between nearest neighbor sites, but the ions cannot. There is an on-site interaction between electrons and ions. The Hamiltonian is

$$
\begin{equation*}
H=\sum_{\langle x, y\rangle} c_{x}^{\dagger} c_{y}-4 U \sum_{x} c_{x}^{\dagger} c_{x} V_{x} \tag{1}
\end{equation*}
$$

[^0]where c_{x}^{\dagger} and c_{x} are creation and annihilation operators for the electrons. V_{x} is the occupation number for the ions, i.e., $V_{x}=1$ if there is a ion at x and $V_{x}=0$ if there is not. The sum over $\langle x, y\rangle$ is over nearest neighbor bonds in the lattice. (The factor of 4 in front of the U is included for latter convenience.) This paper is only concerned with the square lattice, although the model may be defined on any lattice. We will only consider the neutral model in which the number of electrons is equal to the number of ions, and the interaction parameter U will be large and positive. By a hole-particle transformation results for positive U imply results for negative U, but we will not bother to state them.

A review of rigorous work on the Falicov-Kimball model may be found in ref. 4. Here we mention only some of the work on the neutral model for large positive U. In one dimension it is expected that for large U the ground state of the neutral model with rational density is the periodic arrangement of the ions which is "most homogeneous." (There is an explicit algorithm for determining the most homogeneous configuration.) This was proved by Lemberger for $U>U_{c}$ where U_{c} depends on the denominator of the rational density. ${ }^{(7)}$ In any number of dimensions the ground state for density $1 / 2$ is the checkerboard configuration for all $U>0 .{ }^{(1,6)}$ In two dimensions with large U the ground states for densities $1 / 3,1 / 4$ and $1 / 5$ are known rigorously and are periodic. ${ }^{(3,5)}$ For densities between $1 / 4$ and $1 / 2$ there are partial results on the ground state, ${ }^{(5)}$ but there is no proof it is periodic for rational densities. Based on what is known in one and two dimensions and the methods used to obtain these results, it is natural to conjecture that in two dimensions the ground state for large U is periodic for rational densities.

In this paper we prove that this conjecture is wrong for densities between $1 / 5$ and $1 / 4$ other than $2 / 9$. In this density range there is phase separation in the ground state. The phases involved are the ground states for densities $1 / 5,2 / 9$ and $1 / 4$, which are shown in Fig. 1. The ground state for densities between $1 / 5$ and $2 / 9$ is made up of large regions of density $1 / 5$ and density $2 / 9$ ground states with the relative areas chosen to yield the desired density. A similar statement holds for densities between $2 / 9$ and $1 / 4$. The precise theorem is as follows.

Theorem 1. There are positive constants U_{0} and c such that for $U \geqslant U_{0}$ the following is true for L by L squares A with n ions and n electrons. Let $\rho=n / L^{2}$ be the common density. If the density ρ is $2 / 9, L$ is a multiple of 6 and we use periodic boundary conditions, then the ground state configurations of the ions are configuration B in Fig. 1 and its translates. If the density ρ is between $1 / 5$ and $2 / 9$, then for every ground state configuration of the ions we can find a subset Λ_{0} of A which contains at

Fig. 1. The ground states for densities $1 / 5,2 / 9$ and $1 / 4$ (left to right). The heavy lines between the ions are only a guide for the eye.
most $c U^{8} L$ sites and is such that on each connected component of $\Lambda \backslash \Lambda_{0}$ the configuration agrees with either configuration A or B in Fig. 1 (up to a lattice symmetry). If the density ρ is between $2 / 9$ and $1 / 4$, then the same statement is true with " A or B " replaced by " B or D." (The statements for densities other than $2 / 9$ are true for any choice of boundary conditions.)

Although U^{8} is large, the key point is that the bound on the number of sites in A_{0} contains L while the number of sites in A is L^{2}. So for large L, Λ_{0} is a tiny fraction of the total area. We can think of Λ_{0} as consisting of domain walls between large regions which contain one of the configurations shown in Fig. 1. The phase separation we find in this range of densities for the neutral model should not be confused with the phase separation discussed by Freericks and Falicov. ${ }^{(2)}$ Their argument applied to the nonneutral model.

The expectation that the neutral model with rational density should have periodic ground states is based on the following intuition. The attraction between electrons and ions is large, so each electron spends most of its time at a site with an ion. Now consider the kinetic energy of an electron. If nearby sites have ions, then the electrons at those sites will restrict the movement of the electron we are considering. So its kinetic energy is minimized by spreading out the ions as much as possible to maximize the space that each electron has to move in. However, Watson ${ }^{(8)}$ emphasized that there will typically be a mismatch between the lattice and the natural ion configuration in the absence of a lattice. Thus the lattice structure can frustrate the exclusion principle's attempts to put the ions in the "most
homogeneous" configuration. We should emphasize that this paper only covers a small interval of densities. An important open question is whether the phase separation we find here holds for most densities, or whether there are intervals in which the rational densities have periodic ground states which are the most homogeneous in some sense.

We conclude the introduction by sketching the proof for densities in $(1 / 5,2 / 9)$. When U is large and the model is neutral, the ground state energy of a given ion configuration may be expanded in powers of $1 / U$. This yields an effective Hamiltonian for the ions. One can begin to study it by only keeping terms up to a certain order in $1 / U$. (Of course, to prove anything one must eventually consider all orders.) Watson ${ }^{(8)}$ showed that when the density is between $1 / 5$ and $1 / 4$ the ground states of the fourth order Hamiltonian correspond to tilings of the plane by squares and diamonds in which the squares and diamonds have the dimensions of those found in Fig. 1. Watson's result will play a crucial role in our proof. The vertices in such a tiling can be one of four types which we label A, B, C or D following Watson's notation. The four types are shown in Fig. 3. Note that in Fig. 1 configurations A, B or D contain only vertices of type A, B or D , respectively.

All configurations that correspond to a square-diamond tiling have the same energy through fourth order. To determine the ground states for densities in $(1 / 5,2 / 9)$ we must go to higher orders in the perturbation series. Following Watson's treatment of a similar model, we write the Hamiltonian as a function of the number of each type of vertex. At sixth order these square-diamond tilings still all have the same energy. At eighth order vertices of type A, B and C have the same energy but vertices of type D have higher energy. For densities between $1 / 5$ and $2 / 9$ there are square-diamond tilings which contain no vertices of type D. To determine the ground state among all these configurations we must go to tenth order. Here we find that the energy of a type C vertex is higher than that of a type B vertex. Thus for densities in $(1 / 5,2 / 9)$ the ground state must be a square-diamond tiling with only type A and B vertices. (Note that the tiling with only type A vertices has density $1 / 5$, while the tiling with only type B vertices has density $2 / 9$. So one can obtain any density in $(1 / 5,2 / 9)$ by a suitable mix of type A and B vertices.) However, a type A vertex cannot be adjacent to a type B vertex. Thus we must separate the A and B vertices to minimize the energy.

2. PROOF OF PHASE SEPARATION

To derive the perturbation theory it is convenient to change to "spin" variables for the ions. Let $2 V_{x}=S_{x}+1$, so $S_{x}=1$ when there is an ion at
x and $S_{x}=-1$ when there is not. We then take

$$
H=\sum_{\langle x, y\rangle} c_{x}^{\dagger} c_{y}-2 U \sum_{x} c_{x}^{\dagger} c_{x} S_{x}
$$

This differs from the original Hamiltonian by a term proportional to $\sum_{x} c_{x}^{\dagger} c_{x}$, but we will only consider problems in which the number of electrons is fixed, so such a term is constant.

There are no interactions between the electrons, so the Hamiltonian is just the second quantized form of the single electron Hamiltonian $T-2 U S$. The operator T has matrix elements $T_{x y}$ with $T_{x y}=1$ if $|x-y|=1$ and $T_{x y}=0$ otherwise. The operator S is diagonal with entries S_{x}. The ground state energy for N electrons is the sum of the N lowest eigenvalues of $T-2 U S$. To find the ground state for a particular density of electrons and ions we must minimize this energy over all S with the desired ion density.

Let $H(S)$ be the ground state energy for the ion configuration S with the number of electrons equal to the number of ions. To expand $H(S)$ in powers of $1 / U$, we begin by rewriting $H(S)$ as in ref. 6. If $U>2$ then the number of negative eigenvalues of $T-2 U S$ is equal to the number of sites with $S_{x}=1$, i.e., the number of ions. Thus when the number of electrons equals the number of ions, we have

$$
\begin{equation*}
H(S)=\sum_{\lambda_{i}<0} \lambda_{i}=\frac{1}{2}[\operatorname{Tr}(T-2 U S)-\operatorname{Tr}(|T-2 U S|)] \tag{1}
\end{equation*}
$$

where λ_{i} are the eigenvalues of $T-2 U S$. Now $\operatorname{Tr}(T)=0$, and if we keep the number of ions fixed then $\operatorname{Tr}(S)$ is a constant. So we might as well redefine $H(S)=-\frac{1}{2} \operatorname{Tr}(|T-2 U S|)$. Then we write this as

$$
\begin{equation*}
H(S)=-\frac{1}{2} \operatorname{Tr}(|T-2 U S|)=-\frac{1}{2} \operatorname{Tr}\left(\left[(T-2 U S)^{2}\right]^{1 / 2}\right)=-U \operatorname{Tr}(1+\Delta)^{1 / 2} \tag{2}
\end{equation*}
$$

with

$$
\Delta=-(2 U)^{-1}(T S+S T)+(2 U)^{-2} T^{2}
$$

We have used the fact that $S^{2}=1$.
Now we derive the perturbation theory by following the treatment by Gruber, Jedrzejewski and Lemberger. ${ }^{(3)}$ A somewhat different derivation may be found in ref. 7. If U is sufficiently large, then $\|\Delta\|<1$ and we may expand $(1+\Delta)^{1 / 2}$ in a power series in Δ. Since $T_{x y}$ is nonzero only if x and y are nearest neighbors, when we take the trace of each term we generate
nearest neighbor walks that end where they start. Grouping together terms with the same power of U^{-1}, we may write the result as

$$
\begin{equation*}
H(S)=\sum_{m=1}^{\infty} U^{-2 m+1} \sum_{X} h_{2 m, X} S_{X} \tag{3}
\end{equation*}
$$

X is summed over finite subsets of the lattice, and $S_{X}=\prod_{x \in X} S_{x}$. The coefficient $h_{2 m, X}$ is nonzero only if there is a nearest neighbor walk with $2 m$ steps which ends where it begins and visits each site in X. (It may visit sites outside of X as well.) The coefficients $h_{2 m, X}$ are invariant under the usual lattice symmetries. There is a constant c such that for every site x

$$
\begin{equation*}
\sum_{X: x \in X}\left|h_{2 m, X}\right| \leqslant c^{m} \tag{4}
\end{equation*}
$$

We need to compute this effective Hamiltonian through tenth order, i.e., through the $m=5$ terms. There are a lot of terms at this order. Since we will consider relatively low densities, it will prove useful to go back to the occupation variables V_{x}. (Recall that $S_{x}=2 V_{x}-1$.) Equation (3) gives

$$
\begin{equation*}
H(V)=\sum_{m=1}^{\infty} U^{-2 m+1} \sum_{X} c_{2 m, X} V_{X} \tag{5}
\end{equation*}
$$

where $V_{X}=\prod_{x \in X} V_{x}$. The coefficients $c_{2 m, X}$ may be computed from the $h_{2 m, X}$ in a straightforward manner. In particular, they are nonzero only if X is contained in the set of sites visited by a $2 m$ step nearest neighbor walk that ends where it begins. The $c_{2 m, x}$ satisfy a bound like (4).

For the proof it is useful to split the effective Hamiltonian into three parts.

$$
\begin{equation*}
H=H_{4}+H_{10}+H_{\infty} \tag{6}
\end{equation*}
$$

H_{4} contains the terms in Eq. (5) for $m=1$ and 2. H_{10} contains the terms with $m=3,4$ and 5 , and H_{∞} contains the terms with $m>5$. The fourth order Hamiltonian H_{4} has been computed before. ${ }^{(3)}$ In the occupation variables it may be written in the following form.

$$
\begin{aligned}
H_{4}= & U^{-1}\left[8 \sum_{\langle x y\rangle:|x-y|=1} V_{x} V_{y}-16 \sum_{x} V_{x}\right] \\
& +U^{-3}\left[64 \sum_{\langle x y\rangle:|x-y|=\sqrt{2}} V_{x} V_{y}+16 \sum_{\langle x y\rangle:|x-y|=2} V_{x} V_{y}\right. \\
& \left.-16 \sum_{x} V_{x}+\sum_{X \in E_{4}} c_{4, X} V_{X}\right]
\end{aligned}
$$

Fig. 2. For densities between $1 / 5$ and $1 / 4$, fourth order perturbation theory implies that in a ground state every 3 by 3 square must be one of the above cases, up to lattice symmetries.
E_{4} is the collections of sets X which appear at fourth order and contain a pair of sites x, y with $|x-y|=1$. There are only a few such sets and we can compute their coefficients explicitly, but as we will see their actual values play no role in the proof. If $X \in E_{4}$ and $V_{X} \neq 0$, then there is a nearest neighbor pair x, y with $V_{x} V_{y}=1$. This gives a contribution of $8 U^{-1}$ to H_{4} which is much larger than the order U^{-3} contribution from $c_{4, X} V_{X}$.

It was shown in ref. 5 that for configurations with density between $1 / 5$ and $1 / 4$ which minimize H_{4} every 3 by 3 block of sites must look like one of the four configurations shown in Fig. 2. (We will include a proof of this later.) Watson ${ }^{(8)}$ made the following observation that will play an essential role in our proof.

Lemma 1. If every 3 by 3 block equals one of those shown in Fig. 2 (up to a lattice symmetry), then the configuration corresponds to a tiling of the lattice by squares and diamonds in which every vertex looks like one of the four types shown in Fig. 3 up to a lattice symmetry.

Proof. ${ }^{(8)}$ Note that the 3 by 3 blocks we are using can overlap. Thus the condition that every one of these blocks is one of those shown in Fig. 2 puts many constraints on the configuration. We start with a site at which these is an ion. Using the fact that every 3 by 3 block is one of those shown in Fig. 2 we work outwards from the initial ion and determine all possible

Fig. 3. For densities between $1 / 5$ and $1 / 4$, every ground state corresponds to a tiling of the plane by squares and diamonds in which every vertex must be one of the four types shown above. The ions at the center of each of these figures are called type A, B, C or D ions, respectively
configurations in the neighborhood of the inital ion. We find that the configuration must look like one of the four cases shown in Fig. 3.

It is important to note that the proof of the lemma is local. If we have a configuration in which some 3 by 3 blocks are not one of those shown in Fig. 2, then we can still conclude that in the parts of the lattice where the 3 by 3 blocks are one of those shown in the figure the configuration must be given by a square-diamond tiling. We will say that an ion is type $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D if the configuration in the neighborhood of the ion agrees with that shown in Fig. 3 up to a lattice symmetry. Note that in regions where the configuration does not correspond to a square-diamond tiling there will be ions that are not any of these four types.

The tenth order Hamiltonian H_{10} contains too many terms to list here. However, we can organize the Hamiltonian so that we only need the actual values of the coefficients of a modest number of them. The values of the coefficients of the terms in H_{10} are important only in regions where H_{4} is minimized. By the lemma the configuration corresponds to a squarediamond tiling in such regions. In these tilings two ions cannot be separated by a distance $1, \sqrt{2}, \sqrt{8}$ or 3 . So we define E_{10} to be the collection of sets that appear at tenth order or lower and contain a pair of sites x, y with $|x-y|^{2}$ equal to $1,2,8$ or 9 . For $X \notin E_{10}$ the coefficients $c_{6, X}$, $c_{8, X}, c_{10, X}$ are given in Table 1.

Table 1. The Sixth-, Eighth-, and Tenth-Order Terms in the Hamiltonian When Restricted to Configurations That Correspond to Tilings by Squares and Diamonds

Term	6th	8th	10th	A	B	C	D
$(0,0)$	64	112	-704	1	1	1	1
$(0,0),(2,0)$	96	-1360	-1440	0	1/2	1/2	1
$(0,0),(2,1)$	216	-768	- 14000	2	2	2	2
$(0,0),(3,1)$		512	640	2	1	1	0
$(0,0),(4,0)$		32	1120	0	1/2	1/2	2
$(0,0),(3,2)$			4000	0	0	1/2	2
$(0,0),(4,1)$			1000	0	2	1	0
(0, 0), $(5,0)$			40	2	0	1/2	0
$(0,0),(2,0),(1,2)$		- 2592	10560	0	1	1	2
$(0,0),(2,0),(4,0)$		192	1760	0	0	0	1
$(0,0),(2,0),(1,3)$			-7040	0	0	0	0
$(0,0),(2,0),(3,2)$			-5280	0	0	1	4
$(0,0),(2,1),(4,0)$			-3960	0	1	1	2
$(0,0),(2,1),(4,1)$			1320	0	2	1	0
$(0,0),(2,1),(-1,2)$			- 15840	4	2	2	0
$(0,0),(1,2),(2,0),(3,2)$			15840	0	0	1/2	2

Now we are ready to state and prove the main inequalities that will show there is phase separation for densities between $1 / 5$ and $1 / 4$ other than $2 / 9$.

Theorem 2. Let M be the number of 3 by 3 blocks in which the configuration is not one of those shown in Fig. 2. Let n_{A}, n_{B}, n_{C} and n_{D} be the number of type A, B, C and D ions respectively (Fig. 3). Consider an L by L lattice so there are L^{2} sites, and let ρ be the ion density so there are ρL^{2} ions. Then there are polynomials $p_{1}, p_{2}, \ldots, p_{6}$ in U^{-1} and functions $f_{1}, f_{2}, f_{3}, f_{4}$ of U^{-1} such that

$$
\begin{align*}
& \frac{16}{3} U^{-3} M \\
& \quad \leqslant H_{4}-p_{1} \rho L^{2}-p_{2} L^{2}=O\left(U^{-1}\right) M \tag{7}\\
& H_{10}-p_{3} \rho L^{2}-p_{4} L^{2} \\
& \quad=224 U^{-7} n_{D}+2340 U^{-9} n_{C}+12240 U^{-9} n_{D}+O\left(U^{-5}\right) M \tag{8}\\
& H_{10}-p_{5} \rho L^{2}-p_{6} L^{2} \\
& \quad=224 U^{-7} n_{A}+2340 U^{-9} n_{C}+12240 U^{-9} n_{A}+O\left(U^{-5}\right) M \tag{9}\\
& H_{\infty}- \\
& \quad f_{1} \rho L^{2}-f_{2} L^{2} \tag{10}\\
& \quad=O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right) \\
& H_{\infty}- \tag{11}\\
& \quad f_{3} \rho L^{2}-f_{4} L^{2} \\
& \quad=O\left(U^{-11}\right)\left(n_{A}+n_{C}+M\right)
\end{align*}
$$

$O\left(U^{-k}\right)$ denotes a quantity whose absolute value may be bounded by a constant times U^{-k}.

Proof. The inequality for H_{4} was proved in ref. 5. We include a short proof for completeness. Let B be a 3 by 3 block of sites. (So it contains 9 sites.) Let z be the center of B. Define

$$
\begin{aligned}
H_{B}= & U^{-1} \frac{4}{3} \sum_{\langle x y\rangle \subset B:|x-y|=1} V_{x} V_{y}+U^{-3}\left[16 \sum_{\langle x y\rangle \in B:|x-y|=\sqrt{2}} V_{x} V_{y}\right. \\
& +\frac{16}{3} \sum_{\langle x y\rangle \subset B:|x-y|=2} V_{x} V_{y}-16 V_{z}-\frac{32}{3} \sum_{x \in B:|x-z|=1} V_{x} \\
& \left.-\frac{16}{3} \sum_{x \in B:|x-z|=\sqrt{2}} V_{x}+16+\sum_{X \in B, X \in E_{4}} \frac{c_{4, x} V_{X}}{m_{X}}\right]
\end{aligned}
$$

where m_{X} is the number of translates of X that are contained in B. Now consider $\sum_{B} H_{B}$ where the sum is over all 3 by 3 blocks. (So some of them overlap.) A pair $\langle x y\rangle$ with $|x-y|=1$ is contained in 6 different blocks, a pair with $|x-y|=\sqrt{2}$ in 4 different blocks, and a pair with $|x-y|=2$ in 3 different blocks. Using these facts we find

$$
\begin{equation*}
\sum_{B} H_{B}=H_{4}+\left(16 U^{-1}-64 U^{-3}\right) \rho L^{2}+16 U^{-3} L^{2} \tag{12}
\end{equation*}
$$

So to complete the proof we must show that H_{B} vanishes if B is one of the blocks shown in Fig. 2 and is at least $\frac{16}{3} U^{-3}$ otherwise. First note that if the block contains a pair of nearest neighbor ions then the second order part of H_{B} is at least $\frac{4}{3} U^{-1}$. Since the fourth order part is smaller by a factor of U^{-2}, this shows that $H_{B} \geqslant \frac{16}{3} U^{-3}$ for all such configurations if U is large enough. Now suppose that the block does not contain any nearest neighbor ions. Note that this implies that $V_{X}=0$ for all $X \in E_{4}$. So we can easily compute H_{B} for such configurations. We find that for all 3 by 3 blocks that do not contain a nearest neighbor pair of ions and which are not in Fig. 2, H_{B} is at least $\frac{16}{3} U^{-3}$. H_{B} vanishes on the configurations in Fig. 2. This completes the proof of (7).

To prove (8) and (9) we first consider configurations which correspond to a square-diamond tiling. If $X \in E_{10}$ then $V_{X}=0$ in these configurations. We will consider two X 's to be equivalent if they are related by a translation reflection and or rotation. For $X \notin E_{10}$ there are 16 equivalence classes, listed in Table 1. For each equivalence class we want to write the number of X in the class with $V_{X}=1$ in terms of $n_{A}, n_{B}, n_{C}, n_{D}$. Consider the second equivalence class. It contains those X 's of the form $X=\{x, y\}$ with $|x-y|=2$. The number of such X with $V_{X} \neq 0$ in Fig. 3 is $0,2,2$, or 4 for A, B, C, or D, respectively. However, this overcounts the number of X with $V_{X} \neq 0$. Each X is counted 4 times. So the number of X 's in the second equivalence class with $V_{X}=1$ is $0 n_{A}+\frac{1}{2} n_{B}+\frac{1}{2} n_{C}+n_{D}$. These coefficients $0, \frac{1}{2}, \frac{1}{2}, 1$ along with the coefficients for all the other equivalence classes are given in Table l. We should emphasize that the overcounting factor is not always 4. It varies from equivalence class to equivalence class, and in one case within the equivalence class. Using Table 1 we find that for configurations which correspond to a square-diamond tiling,

$$
\begin{aligned}
H_{10}= & U^{-5}\left(496 n_{A}+544 n_{B}+544 n_{C}+592 n_{D}\right) \\
& +U^{-7}\left(-400 n_{A}-4168 n_{B}-4168 n_{C}-7712 n_{D}\right) \\
& +U^{-9}\left(-90704 n_{A}-48664 n_{B}-46324 n_{C}+5616 n_{D}\right)
\end{aligned}
$$

The quantities n_{A}, n_{B}, n_{C} and n_{D} are not all independent. Each ion corresponds to a vertex in the square-diamond tiling, so

$$
\begin{equation*}
n_{A}+n_{B}+n_{C}+n_{D}=\rho L^{2} \tag{13}
\end{equation*}
$$

By considering the areas associated with each of the four types of vertices in Fig. 3, we see that

$$
\begin{equation*}
5 n_{A}+\frac{9}{2} n_{B}+\frac{9}{2} n_{C}+4 n_{D}=L^{2} \tag{14}
\end{equation*}
$$

Using these two equations we can eliminate n_{A} and n_{B} from our expression for H_{10}. The result is (8). If we use the two equations to eliminate n_{B} and n_{D}, then the result is (9).

This proves (8) and (9) for configurations that correspond to a square-diamond tiling. Now consider a configuration that does not. The number of sites in the region where it does not correspond to such a tiling is at most $9 M$. Thus the terms in H_{10} that intersect this region can contribute at most $O\left(U^{-5}\right) M$. Outside of this region we can apply the above argument. There will be errors at the boundary of the region in which there is a square-diamond tiling since there will be incomplete squares and diamonds, but the contribution of these errors is also $O\left(U^{-5}\right) M$. Equations (13) and (14) are not true for a general configuration, but the difference between the right and left side of these equations is bounded by a constant times M. This completes the proof of (8) and (9).

Finally, we must prove (10) and (11). We only give the proof of (10). A similar argument proves (11), or it may be obtained from (10) by showing $\left|n_{A}-n_{D}-2 L^{2}+9 \rho L^{2}\right|$ is bounded by a constant times M. To compare a term $c_{2 m, X} V_{X}$ in H_{∞} with the corresponding term for the configurations in Fig. 1, we need to know if X is contained in a region where the configuration agrees with one of the configurations in Fig. 1. So we make the following definitions. First we let A be the set of sites at which there is a type A ion. Recall that this means that the configuration near the ion agrees with that shown in Fig. 3 up to a lattice symmetry. (More precisely, there must be eight ions around the type A ion arranged as shown in the figure and no other ions closer to the type A ion than these eight ions.) For a lattice site x and positive integer r, let $B_{r}(x)$ be the set of sites such that the l^{1} distance from x to y is at most r. Given a configuration, let A_{m} be the set of sites x such that there is an ion at x and on $B_{m}(x)$ the configuration agrees with configuration A in Fig. 1 up to a lattice symmetry. Loosely speaking, A_{m} is the subset of A where one must go at least a distance m to see something other than A vertices. B_{m} is
defined analogously using configuration B . Define $\hat{c}_{2 m, X}=c_{2 m, X} /|X|$ so that

$$
\begin{equation*}
H_{\infty}=\sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x} \sum_{X: x \in X} \hat{c}_{2 m, X} V_{X} \tag{15}
\end{equation*}
$$

Since $V_{X}=0$ if $V_{x}=0$, we can restrict the sum over x to sites with an ion.
Let I denote the sites with an ion. We start by comparing H_{∞} with the sum over a subset of the terms in H_{∞} :

$$
\begin{align*}
\mid H_{\infty} & -\sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x \in A_{m} \cup B_{m}} \sum_{X: x \in X} \hat{c}_{2 m, X} V_{X} \mid \\
& =\left|\sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x \in \Lambda \backslash\left(A_{m} \cup B_{m}\right)} \sum_{X: x \in X} \hat{c}_{2 m, X} V_{X}\right| \\
& \leqslant \sum_{m=6}^{\infty} U^{-2 m+1}\left|I \backslash\left(A_{m} \cup B_{m}\right)\right| c^{m} \tag{16}
\end{align*}
$$

using (4). We need to estimate the size of $I \backslash\left(A_{m} \cup B_{m}\right)$. Let $x \in I \backslash$ $\left(A_{m} \cup B_{m}\right)$. Then the configuration in $B_{m}(x)$ is not a subset of configuration A or B in Fig. 1. So the configuration in $B_{m}(x)$ is either (i) not a subset of any square-diamond tiling, (ii) a subset of a square-diamond tiling which contains a type C or type D vertex, or (iii) a subset of a square-diamond tiling which contains both type A and type B vertices. In case (i) $B_{m}(x)$ must intersect a 3 by 3 block that is not one of those in Fig. 2. Note that it is not possible for a tiling to contain both type A and type B vertices, but no type C or D , so case (iii) never happens. Thus we can associate with each site in $I \backslash\left(A_{m} \cup B_{m}\right)$ either a "bad" 3 by 3 block or a type C or type D vertex. The number of sites that are associated with the same 3 by 3 block or type C or type D vertex is bounded by $d m^{2}$ for some constant d. Thus

$$
\begin{equation*}
\left|I \backslash\left(A_{m} \cup B_{m}\right)\right| \leqslant d m^{2}\left(n_{C}+n_{D}+M\right) \tag{17}
\end{equation*}
$$

Thus (16) is

$$
\begin{equation*}
\leqslant \sum_{m=6}^{\infty} U^{-2 m+1} c^{m} d m^{2}\left(n_{C}+n_{D}+M\right)=O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right) \tag{18}
\end{equation*}
$$

Let e_{A} be the energy per site from H_{∞} when the entire finite lattice contains configuration A in Fig. 1, and let e_{B} be the same quantity for configuration B in Fig. 1. Let

$$
\begin{equation*}
5 e_{A}=\sum_{m=6}^{\infty} U^{-2 m+1} a_{2 m} \tag{19}
\end{equation*}
$$

If $x \in A_{m}$ then the definition of A_{m} implies that

$$
\begin{equation*}
\sum_{X: x \in X} \hat{c}_{2 m, X} V_{X}=a_{2 m} \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|\sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x \in A_{m}} \sum_{X: x \in X} \hat{c}_{2 m, X} V_{X}-5 n_{A} e_{A}\right| \leqslant \sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x \in A \backslash A_{m}}\left|a_{2 m}\right| \tag{21}
\end{equation*}
$$

Since $A \backslash A_{m} \subset I \backslash\left(A_{m} \cup B_{m}\right)$, (17) implies $\left|A \backslash A_{m}\right| \leqslant c m^{2}\left(n_{C}+n_{D}+M\right)$. This shows that (21) is $O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right)$.

A similar argument shows

$$
\begin{equation*}
\sum_{m=6}^{\infty} U^{-2 m+1} \sum_{x \in B_{m}} \sum_{X: x \in X} \hat{c}_{2 m, X} V_{X}-\frac{9}{2} n_{B} e_{B}=O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right) \tag{22}
\end{equation*}
$$

Combining our bounds on (16) and (21) with (22) shows

$$
\begin{equation*}
\left|H_{\infty}-5 n_{A} e_{A}-\frac{9}{2} n_{B} e_{B}\right|=O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right) \tag{23}
\end{equation*}
$$

As before we can use (13) and (14) to write n_{A} and n_{B} as a linear combination of $n_{C}, n_{D}, \rho L^{2}$ and L^{2} up to an error of order M. Inequality (10) follows.

The main theorem follows easily from the inequalities we have proved by a "variational" argument.

Proof of Theorem 1. First we prove the statement about the ground state for density $2 / 9$. Configuration B has $M=0$ and only type B vertices, so Theorem 2 immediately implies it is a ground state. Any other ground state must have $M=0$ and no type C or D vertices. The condition $M=0$ implies the configuration is a square-diamond tiling. The only tiling which contains only A and B vertices and has density $2 / 9$ is configuration B in Fig. 1.

Now we turn to the proof of the statements for densities between $1 / 4$ and $1 / 5$. We will construct a trial configuration with relatively low energy and then use the inequalities in Theorem 2 to prove Theorem 1 . We give the proof for the case of densities in $(1 / 5,2 / 9)$. The proof for densities in (2/9, l/4) is similar.

Divide the L by L square into two rectangles and put configuration A in Fig. 1 on one side and configuration B on the other side. The relative areas of the two rectangles are chosen to give the desired density. The
number of 3 by 3 blocks which do not agree with one of those in Fig. 2 is bounded by a constant times L. Thus $H_{4}-p_{1} \rho L^{2}-p_{2} L^{2}$ is $O\left(U^{-1}\right) L$. n_{C} and n_{D} are both zero, so $H_{10}-p_{3} \rho L^{2}-p_{4} L^{2}$ is $O\left(U^{-5}\right) L$ and $H_{\infty}-$ $f_{1} \rho L^{2}-f_{2} L^{2}$ is $O\left(U^{-11}\right) L$. Any ground state must have energy no greater than that of our trial configuration, so Theorem 2 implies that in a ground state

$$
\begin{aligned}
& \frac{16}{3} U^{-3} M+224 U^{-7} n_{D}+2340 U^{-9} n_{C}+12240 U^{-9} n_{D}+O\left(U^{-5}\right) M \\
& \quad+O\left(U^{-11}\right)\left(n_{C}+n_{D}+M\right) \leqslant O\left(U^{-1}\right) L
\end{aligned}
$$

which may be rearranged as

$$
\begin{aligned}
& {\left[\frac{16}{3} U^{-3}+O\left(U^{-5}\right)+O\left(U^{-11}\right)\right] M+\left[224 U^{-7}+12240 U^{-9}+O\left(U^{-11}\right)\right] n_{D}} \\
& \quad+\left[2340 U^{-9}+O\left(U^{-11}\right)\right] n_{C} \leqslant O\left(U^{-1}\right) L
\end{aligned}
$$

If U is large enough this implies that $M+n_{C}+n_{D}$ is bounded by a constant times $U^{8} L$. Now take A_{0} to be the union of all the 3 by 3 blocks which do not agree with one of the configurations in Fig. 2 together with the union over all type C and type D ions of the region associated with the ion shown in Fig. 3. In $A \backslash A_{0}$ the configuration must be a square-diamond tiling with no C or D vertices. Note that type A and type B vertices cannot be adjacent in the tiling, i.e., separated by a distance $\sqrt{5}$. However, this does not quite insure that each component contains only type A or type B vertices. For example one can have a component that consists of two large regions which are connected only by a single line of sites. Then one can have type A vertices on one side of the narrow connection and type B on the other side. To eliminate this, redefine Λ_{0} to be the original Λ_{0} plus all sites within a distance d of the original set. If d is chosen large enough we eliminate the above problem and every connected component of $\Lambda \backslash \Lambda_{0}$ will be a square-diamond tiling with only type A or type B vertices.

ACKNOWLEDGMENTS

Ideas from ref. 8 play a crucial role in this paper. The author thanks Prof. Watson for sending him a copy of this paper prior to its publication. This work was supported in part by NSF grant DMS-9623509.

REFERENCES

1. U. Brandt and R. Schmidt, Ground state properties of a spinless Falicov-Kimball model, Z. Phys. B 67:43 (1986).
2. J. K. Freericks and L. M. Falicov, Two-state one-dimensional spinless Fermi gas, Phys. Rev. B 41:2163 (1990).
3. C. Gruber, J. Jedrzejewski, and P. Lemberger, Ground states of the spinless FalicovKimball model. II, J. Stat. Phys. 66:913 (1992).
4. C. Gruber and N. Macris, The Falicov-Kimball model: a review of exact results and extensions, Helo. Phys. Acta 69:851 (1996).
5. T. Kennedy, Some rigorous results on the ground states of the Falicov-Kimball model, Rev. Math. Phys. 6:901-925 (1994). Also in The State of Matter, Michael Aizenman and Huzihiro Araki, eds. (World Scientific, 1994).
6. T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica 138A:320-358 (1986).
7. P. Lemberger, Segregation in the Falicov-Kimball Model, J. Phys. A: Math. Gen. 25:715 (1992).
8. G. I. Watson, Repulsive particles on a two-dimensional lattice, Physica 246A:253-274 (1997).

[^0]: ${ }^{1}$ Department of Mathematics, University of Arizona, Tucson, Arizona 85721; e-mail: $\operatorname{tgk}(a$ math.arizona.edu.

