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Phase Separation in the Neutral
Falicov-Kimball Model

The Falicov-Kimball model consists of spinless electrons and classical particles
(ions) on a lattice. The electrons hop between nearest neighbor sites, while the
ions do not. We consider the model with equal numbers of ions and electrons
and with a large on-site attractive force between ions and electrons. For den-
sities 1/4 and 1/5, the ion configuration in the ground state had been proved to
be periodic. We prove that for density 2/9 it is periodic as well. However, for
densities between 1/4 and 1/5 other than 2/9 we prove that the ion configuration
in the ground state is not periodic. Instead there is phase separation. For den-
sities in (1/5, 2/9) the ground-state ion configuration is a mixture of the density
1/5 and 2/9 ground-state ion configurations. For the interval (2/9, 1/4) it is a
mixture of the density 2/9 and 1/4 ground states.

1. INTRODUCTION

The spinless Falicov-Kimball model has two types of particles: spinless
electrons and classical particles, which we refer to as ions. The particles are
on a lattice with the restriction that there is at most one ion at each lattice
site. The spinless electrons are fermions, so there is at most one electron per
site. The electrons can hop between nearest neighbor sites, but the ions
cannot. There is an on-site interaction between electrons and ions. The
Hamiltonian is
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where c£ and cx are creation and annihilation operators for the electrons.
Vx is the occupation number for the ions, i.e., Vx—\ if there is a ion at x
and Vx = 0 if there is not. The sum over <x, j> is over nearest neighbor
bonds in the lattice. (The factor of 4 in front of the U is included for latter
convenience.) This paper is only concerned with the square lattice,
although the model may be defined on any lattice. We will only consider
the neutral model in which the number of electrons is equal to the number
of ions, and the interaction parameter U will be large and positive. By a
hole-particle transformation results for positive U imply results for nega-
tive U, but we will not bother to state them.

A review of rigorous work on the Falicov-Kimball model may be
found in ref. 4. Here we mention only some of the work on the neutral
model for large positive U. In one dimension it is expected that for large
U the ground state of the neutral model with rational density is the peri-
odic arrangement of the ions which is "most homogeneous." (There is an
explicit algorithm for determining the most homogeneous configuration.)
This was proved by Lemberger for U> Uc where Uc depends on the
denominator of the rational density.(7) In any number of dimensions the
ground state for density 1/2 is the checkerboard configuration for all
£/>0. (1>6) In two dimensions with large U the ground states for densities
1/3, 1/4 and 1/5 are known rigorously and are periodic.'3'5' For densities
between 1/4 and 1/2 there are partial results on the ground state,'" but
there is no proof it is periodic for rational densities. Based on what is
known in one and two dimensions and the methods used to obtain these
results, it is natural to conjecture that in two dimensions the ground state
for large U is periodic for rational densities.

In this paper we prove that this conjecture is wrong for densities
between 1/5 and 1/4 other than 2/9. In this density range there is phase
separation in the ground state. The phases involved are the ground states
for densities 1/5, 2/9 and 1/4, which are shown in Fig. 1. The ground state
for densities between 1/5 and 2/9 is made up of large regions of density 1/5
and density 2/9 ground states with the relative areas chosen to yield the
desired density. A similar statement holds for densities between 2/9 and 1/4.
The precise theorem is as follows.

Theorem 1. There are positive constants U0 and c such that for
U^U0 the following is true for L by L squares A with n ions and n elec-
trons. Let p = n/L2 be the common density. If the density p is 2/9, L is a
multiple of 6 and we use periodic boundary conditions, then the ground
state configurations of the ions are configuration B in Fig. 1 and its trans-
lates. If the density p is between 1/5 and 2/9, then for every ground state
configuration of the ions we can find a subset A0 of A which contains at
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most cU8L sites and is such that on each connected component of A\A0

the configuration agrees with either configuration A or B in Fig. 1 (up to
a lattice symmetry). If the density p is between 2/9 and 1/4, then the same
statement is true with "A or B" replaced by "B or D." (The statements for
densities other than 2/9 are true for any choice of boundary conditions.)

Although f/8 is large, the key point is that the bound on the number
of sites in A0 contains L while the number of sites in A is L2. So for large L,
A0 is a tiny fraction of the total area. We can think of A0 as consisting of
domain walls between large regions which contain one of the configura-
tions shown in Fig. 1. The phase separation we find in this range of densities
for the neutral model should not be confused with the phase separation dis-
cussed by Freericks and Falicov.'21 Their argument applied to the non-
neutral model.

The expectation that the neutral model with rational density should
have periodic ground states is based on the following intuition. The attrac-
tion between electrons and ions is large, so each electron spends most of its
time at a site with an ion. Now consider the kinetic energy of an electron.
If nearby sites have ions, then the electrons at those sites will restrict the
movement of the electron we are considering. So its kinetic energy is mini-
mized by spreading out the ions as much as possible to maximize the space
that each electron has to move in. However, Watson'81 emphasized that
there will typically be a mismatch between the lattice and the natural ion
configuration in the absence of a lattice. Thus the lattice structure can
frustrate the exclusion principle's attempts to put the ions in the "most

Fig. 1. The ground states for densities 1/5, 2/9 and 1/4 (left to right). The heavy lines
between the ions are only a guide for the eye.



homogeneous" configuration. We should emphasize that this paper only
covers a small interval of densities. An important open question is whether
the phase separation we find here holds for most densities, or whether there
are intervals in which the rational densities have periodic ground states
which are the most homogeneous in some sense.

We conclude the introduction by sketching the proof for densities in
(1/5,2/9). When U is large and the model is neutral, the ground state
energy of a given ion configuration may be expanded in powers of l/U.
This yields an effective Hamiltonian for the ions. One can begin to study
it by only keeping terms up to a certain order in l/U. (Of course, to prove
anything one must eventually consider all orders.) Watson(8) showed that
when the density is between 1/5 and 1/4 the ground states of the fourth
order Hamiltonian correspond to tilings of the plane by squares and
diamonds in which the squares and diamonds have the dimensions of those
found in Fig. 1. Watson's result will play a crucial role in our proof. The
vertices in such a tiling can be one of four types which we label A, B, C
or D following Watson's notation. The four types are shown in Fig. 3. Note
that in Fig. 1 configurations A, B or D contain only vertices of type A, B
or D, respectively.

All configurations that correspond to a square-diamond tiling have the
same energy through fourth order. To determine the ground states for
densities in (1/5,2/9) we must go to higher orders in the perturbation
series. Following Watson's treatment of a similar model, we write the
Hamiltonian as a function of the number of each type of vertex. At sixth
order these square-diamond tilings still all have the same energy. At eighth
order vertices of type A, B and C have the same energy but vertices of
type D have higher energy. For densities between 1/5 and 2/9 there are
square-diamond tilings which contain no vertices of type D. To determine
the ground state among all these configurations we must go to tenth order.
Here we find that the energy of a type C vertex is higher than that of a
type B vertex. Thus for densities in (1/5, 2/9) the ground state must be a
square-diamond tiling with only type A and B vertices. (Note that the tiling
with only type A vertices has density 1/5, while the tiling with only type B
vertices has density 2/9. So one can obtain any density in (1/5, 2/9) by a
suitable mix of type A and B vertices.) However, a type A vertex cannot be
adjacent to a type B vertex. Thus we must separate the A and B vertices
to minimize the energy.

2. PROOF OF PHASE SEPARATION

To derive the perturbation theory it is convenient to change to "spin"
variables for the ions. Let 2 Vx = Sx + 1, so Sx=l when there is an ion at
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This differs from the original Hamiltonian by a term proportional to
~£x clcx, but we will only consider problems in which the number of elec-
trons is fixed, so such a term is constant.

There are no interactions between the electrons, so the Hamiltonian is
just the second quantized form of the single electron Hamiltonian T-2US.
The operator T has matrix elements Txy with Txy= 1 if \x — y\ = 1 and
7^ = 0 otherwise. The operator S is diagonal with entries Sx. The ground
state energy for N electrons is the sum of the N lowest eigenvalues of
T—2/75. To find the ground state for a particular density of electrons and
ions we must minimize this energy over all S with the desired ion density.

Let H(S) be the ground state energy for the ion configuration S with
the number of electrons equal to the number of ions. To expand H(S) in
powers of l/U, we begin by rewriting H(S) as in ref. 6. If U>2 then the
number of negative eigenvalues of T— 2US is equal to the number of sites
with Sx = l, i.e., the number of ions. Thus when the number of electrons
equals the number of ions, we have

with

We have used the fact that S2 = 1.
Now we derive the perturbation theory by following the treatment by

Gruber, Jedrzejewski and Lemberger.(3) A somewhat different derivation
may be found in ref. 7. If U is sufficiently large, then \\d\\ < 1 and we may
expand (1 +/d)1/2 in a power series in A. Since Txy is nonzero only if x and
y are nearest neighbors, when we take the trace of each term we generate

where A, are the eigenvalues of T—2US. Now Tr( T) = 0, and if we keep the
number of ions fixed then Tr(S) is a constant. So we might as well redefine
H(S)= -%Tr(\T-2US\). Then we write this as
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x and Sx = — 1 when there is not. We then take



H4 contains the terms in Eq. (5) for m = 1 and 2. H[0 contains the terms
with m = 3, 4 and 5, and H^ contains the terms with m>5. The fourth
order Hamiltonian H4 has been computed before/3' In the occupation
variables it may be written in the following form.
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nearest neighbor walks that end where they start. Grouping together terms
with the same power of U~l, we may write the result as

A'is summed over finite subsets of the lattice, and Sx= YlxexSx- The coef-
ficient h2m x is nonzero only if there is a nearest neighbor walk with 2m
steps which ends where it begins and visits each site in X. (It may visit sites
outside of X as well.) The coefficients h2m,x are invariant under the usual
lattice symmetries. There is a constant c such that for every site x

We need to compute this effective Hamiltonian through tenth order,
i.e., through the m = 5 terms. There are a lot of terms at this order. Since
we will consider relatively low densities, it will prove useful to go back to
the occupation variables Vx. (Recall that SX = 2VX — 1.) Equation (3) gives

where Vx = Y\xeXVx. The coefficients c2mtX may be computed from the
him, x m a straightforward manner. In particular, they are nonzero only if
X is contained in the set of sites visited by a 2m step nearest neighbor walk
that ends where it begins. The c2mtX satisfy a bound like (4).

For the proof it is useful to split the effective Hamiltonian into three parts.
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E4 is the collections of sets X which appear at fourth order and contain a
pair of sites x, y with \x — y\ = 1. There are only a few such sets and we can
compute their coefficients explicitly, but as we will see their actual values
play no role in the proof. If ^££4 and Vxi=0, then there is a nearest
neighbor pair x, y with K V K, ,= 1. This gives a contribution of 8(7 "' to H4

which is much larger than the order U~3 contribution from c4 XVX.
It was shown in ref. 5 that for configurations with density between 1/5

and 1/4 which minimize H4 every 3 by 3 block of sites must look like one
of the four configurations shown in Fig. 2. (We will include a proof of this
later.) Watson'81 made the following observation that will play an essential
role in our proof.

Lemma 1. If every 3 by 3 block equals one of those shown in Fig. 2
(up to a lattice symmetry), then the configuration corresponds to a tiling
of the lattice by squares and diamonds in which every vertex looks like one
of the four types shown in Fig. 3 up to a lattice symmetry.

Proof.w Note that the 3 by 3 blocks we are using can overlap. Thus
the condition that every one of these blocks is one of those shown in Fig. 2
puts many constraints on the configuration. We start with a site at which
these is an ion. Using the fact that every 3 by 3 block is one of those shown
in Fig. 2 we work outwards from the initial ion and determine all possible

Fig. 3. For densities between 1/5 and 1/4, every ground state corresponds to a tiling of
the plane by squares and diamonds in which every vertex must be one of the four types
shown above. The ions at the center of each of these figures are called type A, B, C or D ions,
respectively.

Fig. 2. For densities between 1/5 and 1/4, fourth order perturbation theory implies that in
a ground state every 3 by 3 square must be one of the above cases, up to lattice symmetries.



It is important to note that the proof of the lemma is local. If we have
a configuration in which some 3 by 3 blocks are not one of those shown
in Fig. 2, then we can still conclude that in the parts of the lattice where
the 3 by 3 blocks are one of those shown in the figure the configuration
must be given by a square-diamond tiling. We will say that an ion is
type A, B, C or D if the configuration in the neighborhood of the ion
agrees with that shown in Fig. 3 up to a lattice symmetry. Note that in
regions where the configuration does not correspond to a square-diamond
tiling there will be ions that are not any of these four types.

The tenth order Hamiltonian Hlo contains too many terms to list here.
However, we can organize the Hamiltonian so that we only need the actual
values of the coefficients of a modest number of them. The values of the
coefficients of the terms in Hlo are important only in regions where H4 is
minimized. By the lemma the configuration corresponds to a square-
diamond tiling in such regions. In these tilings two ions cannot be
separated by a distance 1, y/2, N/8 or 3. So we define Elo to be the collec-
tion of sets that appear at tenth order or lower and contain a pair of sites
x, y with \x — y\2 equal to 1, 2, 8 or 9. For X$E10 the coefficients c6 x,
c s , x ,  C I Q ,  x  a r e  g i v e n  i n  T a b l e  1 .
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configurations in the neighborhood of the inital ion. We find that the con-
figuration must look like one of the four cases shown in Fig. 3.

Table 1. The Sixth-, Eighth-, and Tenth-Order Terms in the Hamiltonian
When Restricted to Configurations That Correspond to Tilings by Squares and

Term

(0,0)
(0,0), (2,0)
(0,0), ( 2 , 1 )
(0,0), (3, 1)
(0,0), (4,0)
(0,0), (3, 2)
(0,0), (4 ,1)
(0,0), (5 ,0)
(0,0), (2,0), ( 1 , 2 )
(0,0), (2,0), (4,0)
(0,0), (2,0) , ( 1 , 3 )
(0,0), (2,0), (3 ,2 )
(0,0) , (2 ,1 ) , (4,0)
(0,0), (2 ,1) , ( 4 , 1 )
(0,0), ( 2 , 1 ) , ( -1 ,2 )
(0,0), ( 1 , 2 ) , (2,0), (3,2)

Diamonds

6th 8th 10th

64 112 -704
96 -1360 -1440

216 -768 -14000
512 640

32 1120
4000
1000

40
-2592 10560

192 1760
-7040
-5280
-3960

1320
-15840

15840

A

1
0
2
2
0
0
0
2
0
0
0
0
0
0
4
0

B

1
1/2
2
1

1/2
0
2
0
1
0
0
0
1
2
2
0

C

1
1/2
2
1

1/2
1/2

1
1/2

1
0
0
1
1
1
2

1/2

D

1
1
2
0
2
2
0
0
2
1
0
4
2
0
0
2



O(U k) denotes a quantity whose absolute value may be bounded by a
constant times U~k.

Proof. The inequality for H4 was proved in ref. 5. We include a short
proof for completeness. Let B be a 3 by 3 block of sites. (So it contains 9
sites.) Let z be the center of B. Define
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Now we are ready to state and prove the main inequalities that will show
there is phase separation for densities between 1/5 and 1/4 other than 2/9.

Theorem 2. Let M be the number of 3 by 3 blocks in which the
configuration is not one of those shown in Fig. 2. Let nA, nB, nc and nD

be the number of type A, B, C and D ions respectively (Fig. 3). Consider
an L by L lattice so there are L2 sites, and let p be the ion density so there
are pL2 ions. Then there are polynomialspt, p2,--., Pem U~l and functions
/i. /2> /s, /4 of U~l such that



So to complete the proof we must show that HB vanishes if B is one of the
blocks shown in Fig. 2 and is at least ^U~3 otherwise. First note that if
the block contains a pair of nearest neighbor ions then the second order
part of HB is at least \U~l. Since the fourth order part is smaller by a fac-
tor of U~2, this shows that HB^ ^U~3 for all such configurations if U is
large enough. Now suppose that the block does not contain any nearest
neighbor ions. Note that this implies that VX=Q for all XeE4. So we can
easily compute HB for such configurations. We find that for all 3 by 3
blocks that do not contain a nearest neighbor pair of ions and which are
not in Fig. 2, HB is at least ™U~3. HB vanishes on the configurations in
Fig. 2. This completes the proof of (7).

To prove (8) and (9) we first consider configurations which corre-
spond to a square-diamond tiling. If Xe Elo then Vx = 0 in these configura-
tions. We will consider two A"s to be equivalent if they are related by a
translation reflection and or rotation. For X£EW there are 16 equivalence
classes, listed in Table 1. For each equivalence class we want to write the
number of X in the class with Vx=\ in terms of nA, nB, nc, nD. Consider
the second equivalence class. It contains those X's of the form X= {x, y]
with \x— y\ = 2. The number of such X with VX^Q in Fig. 3 is 0,2,2, or
4 for A, B, C, or D, respectively. However, this overcounts the number of
X with Vx 7^ 0. Each X is counted 4 times. So the number of A"s in the
second equivalence class with Vx=\ is OnA + ̂ nB + ̂ nc + nD. These coef-
ficients 0, \, \, 1 along with the coefficients for all the other equivalence
classes are given in Table 1. We should emphasize that the overcounting
factor is not always 4. It varies from equivalence class to equivalence class,
and in one case within the equivalence class. Using Table 1 we find that for
configurations which correspond to a square-diamond tiling,
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where mx is the number of translates of X that are contained in B. Now
consider Y.B HB where the sum is over all 3 by 3 blocks. (So some of them
overlap.) A pair <x^> with x — y\ = 1 is contained in 6 different blocks, a
pair with \x — y\ =^/2 in 4 different blocks, and a pair with \x — y\ =2 in
3 different blocks. Using these facts we find



Using these two equations we can eliminate nA and nB from our expression
for  Hlo.  The resul t  is  (8) .  I f  we use the two equat ions to  e l iminate  ng and
nD, then the result is (9).

This proves (8) and (9) for configurations that correspond to a
square-diamond tiling. Now consider a configuration that does not. The
number of sites in the region where it does not correspond to such a tiling
is at most 9M. Thus the terms in Hlo that intersect this region can con-
tribute at most 0( U~5) M. Outside of this region we can apply the above
argument. There will be errors at the boundary of the region in which there
is a square-diamond tiling since there will be incomplete squares and
diamonds, but the contribution of these errors is also O(U~5) M. Equa-
tions (13) and (14) are not true for a general configuration, but the dif-
ference between the right and left side of these equations is bounded by a
constant times M. This completes the proof of (8) and (9).

Finally, we must prove (10) and (11). We only give the proof of (10).
A similar argument proves (11), or it may be obtained from (10) by
showing \nA — nD — 2L2 + 9pL2\ is bounded by a constant times M. To
compare a term c2m x Vx in H^ with the corresponding term for the con-
figurations in Fig. 1, we need to know if X is contained in a region where
the configuration agrees with one of the configurations in Fig. 1. So we
make the following definitions. First we let A be the set of sites at which
there is a type A ion. Recall that this means that the configuration near the
ion agrees with that shown in Fig. 3 up to a lattice symmetry. (More
precisely, there must be eight ions around the type A ion arranged as
shown in the figure and no other ions closer to the type A ion than these
eight ions.) For a lattice site x and positive integer r, let Br(x) be the set
of sites such that the /' distance from x to y is at most r. Given a configura-
tion, let Am be the set of sites x such that there is an ion at x and on Bm(x)
the configuration agrees with configuration A in Fig. 1 up to a lattice
symmetry. Loosely speaking, Am is the subset of A where one must go
at least a distance m to see something other than A vertices. Bm is
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The quantities nA, ng, nc and nD are not all independent. Each ion
corresponds to a vertex in the square-diamond tiling, so

By considering the areas associated with each of the four types of vertices
in Fig. 3, we see that
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defined analogously using configuration B. Define c2m,x= C2m, xl\X\ so tnat

Since Vx = 0 if Vx = 0, we can restrict the sum over x to sites with an ion.
Let / denote the sites with an ion. We start by comparing Hx with the

sum over a subset of the terms in H^:

us ing  (4 ) .  We  need  to  e s t ima te  the  s i ze  o f  I \ (AmvBm) .  Le t  xe l \
(Am u Bm). Then the configuration in Bm(x) is not a subset of configuration
A or B in Fig. 1. So the configuration in Bm(x) is either (i) not a subset of
any square-diamond tiling, (ii) a subset of a square-diamond tiling which
contains a type C or type D vertex, or (iii) a subset of a square-diamond
tiling which contains both type A and type B vertices. In case (i) Bm(x)
must intersect a 3 by 3 block that is not one of those in Fig. 2. Note that
it is not possible for a tiling to contain both type A and type B vertices, but
no type C or D, so case (iii) never happens. Thus we can associate with
each site in I\(Am u Bm) either a "bad" 3 by 3 block or a type C or type D
vertex. The number of sites that are associated with the same 3 by 3 block
or type C or type D vertex is bounded by dm2 for some constant d. Thus

Thus (16) is

Let eA be the energy per site from //„ when the entire finite lattice
contains configuration A in Fig. 1, and let eB be the same quantity for
configuration B in Fig. 1. Let
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The main theorem follows easily from the inequalities we have proved
by a "variational" argument.

Proof of Theorem 1. First we prove the statement about the ground
state for density 2/9. Configuration B has M = 0 and only type B vertices,
so Theorem 2 immediately implies it is a ground state. Any other ground
state must have M = 0 and no type C or D vertices. The condition M = 0
implies the configuration is a square-diamond tiling. The only tiling which
contains only A and B vertices and has density 2/9 is configuration B in
Fig. 1.

Now we turn to the proof of the statements for densities between 1/4
and 1/5. We will construct a trial configuration with relatively low energy
and then use the inequalities in Theorem 2 to prove Theorem 1. We give
the proof for the case of densities in (1/5, 2/9). The proof for densities in
(2/9, 1/4) is similar.

Divide the L by L square into two rectangles and put configuration A
in Fig. 1 on one side and configuration B on the other side. The relative
areas of the two rectangles are chosen to give the desired density. The
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If xeAm then the definition of Am implies that

Thus

Since A\Amd\(AmuBm), (17) implies \A\Am\ ^cm2(nc + nD +M). This
shows that (21) is O(U~ll)(nc + nD + M).

A similar argument shows

Combining our bounds on (16) and (21) with (22) shows

As before we can use (13) and (14) to write nA and nB as a linear combina-
tion of nc, nD, pL2 and L2 up to an error of order M. Inequality (10)
follows.



If U is large enough this implies that M + nc + nD is bounded by a constant
times U&L. Now take A0 to be the union of all the 3 by 3 blocks which do
not agree with one of the configurations in Fig. 2 together with the union
over all type C and type D ions of the region associated with the ion shown
in Fig. 3. In A\A0 the configuration must be a square-diamond tiling with
no C or D vertices. Note that type A and type B vertices cannot be adja-
cent in the tiling, i.e., separated by a distance ^/5. However, this does not
quite insure that each component contains only type A or type B vertices.
For example one can have a component that consists of two large regions
which are connected only by a single line of sites. Then one can have
type A vertices on one side of the narrow connection and type B on the
other side. To eliminate this, redefine A0 to be the original A0 plus all sites
within a distance d of the original set. If d is chosen large enough we
eliminate the above problem and every connected component of A\A0 will
be a square-diamond tiling with only type A or type B vertices.
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number of 3 by 3 blocks which do not agree with one of those in Fig. 2 is
bounded by a constant times L. Thus H4 — p\pL2 — p2L2 is O(U~1)L.
nc and nD are both zero, so Hlo — p3pL2 — p4L2 is O(U~5)L and Hx —
f1pL2—f2L2 is O(U~n) L, Any ground state must have energy no greater
than that of our trial configuration, so Theorem 2 implies that in a ground
state

which may be rearranged as
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